hauling rocket
Image: David Emmite

Final preparations demanded hours of hands-on soldering and mechanical adjustments, frantic software coding, and hauling the fully armed rocket to the launchpad.

LATER IN THE AFTERNOON, THE PSAS base camp began to fill. A “toy hauler”—a rented RV loaded with gear—rolled in. Small groups began assembling the hillside launch tower and the rocket itself. The scaffolding went up first, held in place by thick guy-wires and massive screws bored into the earth. Bergey and others scrambled up and down the structure, making adjustments, the final touch coming in the gray metal box containing the launch computer lifted into place by a half-dozen-strong team.

“Now, theoretically, we’re ready to put a rocket on this thing,” Bergey said. He checked his watch. “We’re at approximately 16 hours to nominal launch time. Of course, we never launch on time.”

Nightfall brought on the deep outback blackness city dwellers forget. Straggling along the dirt road at the bottom of the hill, PSAS formed a high-tech frontier village—tents lit by campfires, propane stoves, headlamps, and the eerie glow of laptop screens.

Inside the RV, a rotating group of a half-dozen members circled the tiny “dining room” table strewn with computers, wires, and airframe sections. The air was thick with the smell of solder and Chips Ahoy, which appeared to be the weekend’s primary source of sustenance. As they worked, the rocketeers spoke in a fast-paced, tech-heavy lingo.

Greenberg alternated between hands-on help and paternal observation. “This is where we have to bring hardware and software together,” he said. “It’s always like this the night before launch. In fact, we’re a little less panicked this time.” He looked out the RV’s door, up the darkened hill, to where the launch tower’s lonely, improvised beacon slowly pulsed red against the night.

“Check it out,” he said. “I love that. It’s the little things.”


The following afternoon, as an automated voice activated by Bergey conducted the countdown, Greenberg watched the launch tower through a set of high-powered binoculars.


Nearby, another PSAS member hoisted a shoulder-mounted radio tracking device that looked like a postapocalyptic weapon; a single wooden chopstick served as a sighting mechanism.


The white-hot flare flashed at the rocket’s base, but something looked wrong right away. The rocket appeared to stutter in place. Then it whipped up off the launch tower, made an agonizing pause about 50 feet off the ground, and keeled earthward. The nosecone popped off and the parachute flapped loose as LV2 plummeted to the ground.

“Not good!” one observer cried.

“Bad miss,” another said.

“Well, we got a ’chute!” Greenberg said, with almost manic cheeriness.

A few seconds later, Bergey spoke to the crowd—PSAS members, rocket enthusiasts, families with kids who drove down from Bend—through the PA. “That was a … failed launch,” he said. “But everyone’s safe.”

The next half-hour had the dazed and confused air of a high school gym after the undefeated varsity basketball team loses to a bunch of nobodies. All-terrain vehicles and trucks rumbled around the launch site. While some PSAS members immediately set to work tearing down the encampment, others wandered around, looking at a loss for something to do. Twenty minutes after the crash, however, Bergey had recovered some perspective.

“People forget, because it’s not particularly glamorous,” he said, “but failure is a crucial part of science. Nothing is learned without it.”

Indeed, the first clue to the failure: the solid rocket fuel lay scattered on the ground. The rocket had puked out all its energy at the moment of ignition. Later inquiries would reveal that the motor had overpressurized because the fuel they had purchased was flawed—part of a recalled batch.