EVEN IN THIS JADED AGE, WHEN THE Space Shuttle program’s final mission inspires a shrug and satellites grab attention only when they crash, a countdown still stokes excitement.

Just after two o’clock on a summer afternoon, about 50 people scattered across a dry patch of desert outside Brothers fixed their eyes on a scaffold tower jutting 20 feet high about a half-mile away, tipped with a beacon made from an old tennis ball can and some LEDs. At its base stood a skinny, 11-foot-high rocket: a sleek black and silver arrow carrying about 15 pounds of high-explosive fuel; intricate electronics; a GPS system locked on to six to eight orbital satellites; and plenty of improvised electric tape, soldering, and X-Acto knife work. The plan called for the rocket—generically dubbed Launch Vehicle 2 (LV2)—to zip 15,270 feet into the sky and punch a hole in the sound barrier.

At the base of the hill, dozens of members of Portland State Aerospace Society (PSAS), the 14-year-old rocketry club from Portland’s downtown university, looked on, ready to see the sum of thousands of their volunteer hours shoot upward at more than 374 meters per second. While PSAS is officially a student club, the crowd included undergrads, grad students, professors, ex-students, sort-of-students, and category-defying tinkerers with no official PSU connections.

“We might be the largest interdisciplinary science group on campus,” says Andrew Greenberg, a PSU associate in electrical engineering who cofounded PSAS as a student. “Basically we’re open to people who do stuff.”

“Right now, If we want to send someone to space, we have to hitch a ride with the Russians. That’s amazing, when you think about it.” –Christopher Mullens

The stuff they do is make rockets: very elaborate, slightly dangerous, and arguably more ambitious than any others built, as PSAS’s are, almost for free, with all-volunteer labor and essentially homemade parts. With a string of successful launches to their credit, the Portland aeronauts boast structural, guidance, communications, and telemetry systems—homebrewed in campus labs and members’ garages—that many governments or major research universities would envy and might well view as highly proprietary. The group makes every aspect of their rockets’ plans accessible to anyone on the Internet, in keeping with open-source technology ethics and their own collective desire to democratize the final frontier.


launch tower
Image: David Emmite

Members of PSAS erect the launch tower outside Brothers, Oregon.

“We keep finding we need something that either doesn’t exist or is prohibitively expensive,” Greenberg says. “So we go ahead and build it, and then we show everyone how we did it. That’s a tangible benefit to rocketry around the world.”

No one would mistake PSAS for NASA; for one thing, its mostly grant-funded annual budget hovers around $3,000. But even with virtually no money, this ad hoc band is slowly creating a recipe that could allow anyone to shoot a technically advanced rocket high into the sky, and eventually, perhaps, into suborbital space.

“The Portland group definitely embodies what open science and the new era of innovation in space is all about,” says Ariel Waldman, a Bay Area thinker and strategist for various open science projects, and a regular speaker at events organized by the likes of DARPA, the Defense Department’s legendary research arm. “They have few resources, but maximum freedom. On paper, maybe these guys aren’t the top engineers—they don’t have all the traditional credentials, and they’re not working through traditional channels. But they’re far more creative and ambitious than most corporate or university labs.”

The effort coincides with a broader reboot for human space exploration. With the shuttle finished and the official US program in a state of flux, entrepreneurial start-ups, huge defense contractors, and wealthy dilettantes are all prowling for aerospace talent and ideas. At the same time, earth-bound researchers in fields ranging from astrophysics to climate science want to send experimental payloads into the lower reaches of space but lack the rockets to do so. (NASA, for example, launches about 20 such unmanned “sounding” missions a year.)

So as the seconds ticked by in remote Eastern Oregon, the LV2 carried more than the arcane passions of a few Portland hypergeeks. Looking out across the high-desert scrub, you could begin to imagine a fresh start for mankind’s loftiest endeavor.

“7…6…5… ”