But GreenWood Resources, the global timber management company that owns roughly 27,000 acres of poplar plantations throughout the state and now owns these plots, was not willing to host Strauss’s transgenic research. (The trees were in fact uprooted before GreenWood bought the land.) A valuable selling point for the company’s products today is certification by the Forest Stewardship Council, or FSC. The FSC stamp is a sign to consumers of more sustainable practices, and enables businesses selling FSC-certified products to charge higher prices. But FSC prohibits its clients from growing GM trees. The size of the test plots, the containment measures applied, the traits of the trees being grown, and the distinction between commercial and research settings—none of that matters to the council once the label GMO is involved.

Strauss was sympathetic when GreenWood broke things off. After all, what company executive doesn’t want the seal of approval that will help improve the bottom line? Nevertheless, the experience served only to add to Strauss’s sense that transgenic tree science is being asphyxiated. A decade ago, he says, he had companies “falling over me” to join his industry consortium, the main source of funds for field trials, regulatory staff, and other costs. “At one point I had 14 members, but now it’s a struggle to get more than a few.”

Strauss and I drive to a second site, the rain pattering more heavily now. Here, another stand of poplars grows next to a field that Strauss cleared years ago in preparation for more tree planting. But the land sits fallow. Strauss anticipates that he will have to abandon the project once destined for this plot and possibly plow under the nearby trees. Years of laboratory science and field work, scrapped because of the negative perception of GMOs.

At the final stop on our tour, he parks the car alongside a metal fence topped with barbed wire and stares out the window at the trees within the enclosure. Rain hammers the Volvo’s roof. Strauss points to nearby irrigation equipment installed with university dollars, equipment that may go unused if his tree experiments are canceled. Gaining insight about the genetics of trees, he explains, takes years (as compared with, say, studying fruit flies, which mature and produce offspring in a matter of days), making the prospect of abandoning this and other experimental plots especially disheartening. More painful still is the feeling that although his work is valuable, for the environment and for humanity, it’s being suppressed because of fear, not facts. “It makes me insane,” he says.

While Strauss’s work stalls, genetic engineering is thriving and widely accepted. Today, roughly 25 percent of all new drugs are produced using the tools of biotechnology, yet no one complains when this science is applied to medicine. Within the published literature about plant biology, explains the University of Washington’s Toby Bradshaw, a substantial fraction of research involves transgenics. As a tool for conducting the biology and agriculture science of tomorrow, “these methods aren’t just useful; they’re essential.”