gmo 1

Steve Strauss stands in a grove of genetically modified poplar trees near Corvallis.

A soft autumn rain has begun to fall, droplets drumming on the silver Volvo V40’s windshield as Oregon State University forest biotechnology professor Steve Strauss and I arrive at a farm just outside of Corvallis. The tires crunch against gravel as we slow to a stop beside a gate marking the entrance to the field road. A hawk circles overhead. “Over there,” Strauss says, pointing across the field to where the flat land meets a stand of several hundred poplar trees. To the untrained eye, the trees look entirely unremarkable: tall, thin poplars with yellowing leaves. But to many self-appointed guardians of the world’s native forests, they are freakish, alien, and dangerous.

These trees are—deep breath now—GMOs, genetically modified organisms. That three-letter acronym, GMO, is enough to ignite emotions on par with words like Guantánamo, nuclear proliferation, or abortion.

In the eyes of most agriculture, policy, and biotechnology watchers, the Pacific Northwest is far from the epicenter of the GMO debate. Most of the GM, or genetically modified, crops grown in the United States—primarily corn, soy, canola, and cotton—are farmed in the Midwest and the South. But Oregon may turn out to have a pivotal role in the longer history of this science, either as home base for a brilliant GMO innovator whose research helps to save the planet, or as the stage for a screwup that would foreshadow the downfall of this potentially valuable technology.

Scientists across the country describe Strauss as one of the preeminent tree geneticists on the planet—“a one-man institute,” as one colleague put it. He is also, in many ways, a typical Oregon greenie. A bearded, fleece-wearing biologist, he hikes, runs, recycles, eats locally crafted cheeses, and votes liberal. The environmental threat that keeps him up at night stems from the same seemingly unresolvable tension that troubles many people, especially here in the Northwest. At one end of the rope: humanity’s insatiable appetite for forest products—building materials, paper, firewood, biofuels. At the other end: relentless deforestation, which in turn leads to a cascade of ecological consequences such as soil erosion, loss of biodiversity, trashed salmon habitat, and, of course, the big kahuna: global warming.

But, unlike many of his peers, Strauss does more than just bike to work, frequent the farmers market, and eschew dryers for clotheslines. The 54-year-old scientist has spent more than 25 years striving to comprehend the inner workings of trees. A better understanding of their genetics enables timber companies to make smarter, more sustainable decisions, and allows tree farmers to improve their yield so that more wild forestland can be left alone. It is as straightforward an eco-premise as they come: be more efficient with the resources we use so as to reduce our overall take. “Steve’s something of an enlightenment figure in forest biotech,” says University of Washington biologist Toby Bradshaw. “He’s trying to preserve the forests we have, but also provide the fiber that we need.”

Trained at Cornell, Yale, and Berkeley, Strauss has authored or co-authored more than 100 peer-reviewed papers, won Oregon State’s 2009 distinguished professor award, and brought to the university over $16 million in research funding. Some of the trees Strauss planted in the early 1990s are the oldest transgenic trees in North America, and this year he was named Forest Biotechnologist of the Year by the not-for-profit Institute for Forest Biotechnology. “Tree species have long been ignored in terms of molecular research, but Steve and his lab are blazing the trail in this area,” says Richard Amasino, a professor of biochemistry at the University of Wisconsin.