But President Bush doesn’t like his solution. Which is why a growing number of stem cell researchers are turning to a new technique that circumvents the embryonic cloning debate altogether. Now, Mitalipov must decide whether to give up his secrets to another country or play political roulette.

Nestled within the razor-wire-capped, chain-link perimeter of the Oregon National Primate Research Center (ONPRC)—a suburban Jurassic Park that sits on 300 acres of forest in Beaverton—Oregon Health & Science University’s Embryonic Stem Cell Culture Laboratory is not much bigger than a walk-in closet. Inside, it’s uncomfortably warm, thanks to two thrumming incubators heated to 98.6 degrees Fahrenheit—the precise temperature of a mammalian uterus. Beneath overhead fluorescents, the lab’s head researcher, Shoukhrat Mitalipov, hunches over a microscope.

A short, effusively polite 46-year-old émigré from Kazakhstan with a boyish face and spiky black hair, Mitalipov is an emotive speaker, furrowing his eyebrows for emphasis and transposing his v’s as w’s just like Ensign Chekov in the original Star Trek series. Like a proud father, he’s eager to demonstrate what the embryonic stem cells growing inside his incubators can do.

“Now watch closely,” he says as he places a petri dish under the lens of his microscope, which is wired to a small flat-panel display. On the screen, the cellular clump looks vaguely disgusting, like a wad of phlegm on a sidewalk. But then the microscopic bit of spittle expands and contracts. Again, almost imperceptibly, it bulges out, then in.

Actually, Mitalipov informs me, it’s beating. As it should, because this is freshly minted heart tissue.
What’s incredible is that this freakish, living, pulsating lump of nascent heart started out as a skin cell from a monkey’s ear. By fusing the nucleus of that skin cell with an unfertilized monkey egg from which the DNA had been removed, Mitalipov created a new monkey embryo that’s genetically identical to the skin cell donor. A cloned monkey embryo, mind you—the first of its kind. A cloned monkey embryo that then yielded a colony of embryonic stem cells—universal cells that can morph into any cell type—during the embryo’s first weeks of development. And those stem cells grew into the heart tissue that’s currently pumping with life under the microscope.

It’s those cloned monkey embryos that, last November, made it to the cover of the journal Nature and transformed Mitalipov into a scientific hero. For, with the capability to clone monkey embryos, scientists were mere steps away from being able to clone human embryos. Meaning it might be possible to produce human stem cells that could sprout human heart tissue, which could theoretically replace the damaged heart tissue of a heart attack victim. Ditto with bone marrow for leukemia patients. Or neurons for those with Alzheimer’s.

But if that day comes, Mitalipov most likely will be publishing his results from another continent. Because one week after his feat was announced, the scientific hero became a kind of exile.

No one has accused him of any wrongdoing, per se. It’s just that in the Darwinian universe of stem cells funding, Mitalipov’s method of generating stem cells has been superseded by a competing method: One that doesn’t require the discarding or destruction of an embryo—a potential life, as some see it—whether human or primate. One that even Catholics and President Bush can get behind.

And so Mitalipov finds himself in a somewhat unsettling position. While his competitors are lavished with political support, multimillion-dollar grants and new facilities, he has received nothing—a situation that will force him either to adopt a more politically friendly line of research at OHSU, as many of his colleagues elsewhere already have, or take his procedure on the road, to another country.